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1 Computing UMVU Estimators and Lower Bounds for Un-
biased Estimation

1.1 Computing UMVU estimators

Last time, we proved Jensen’s inequality for convex f :

f(E[X]) ≤ E[f(X)].

The Rao-Blackwell theorem told us that if L(θ; d) is convex in d, δ(X) is an estimator,
and T (X) is sufficient, then E[δ | T ] is better than δ. We also saw that if T (X) is complete
sufficient and g(θ) is U -estimable, there is a unique unbiased estimator of the form δ(T ). It
is UMVU (dominates all other unbiased estimators for any convex L). We saw that there
were 2 ways to find UMVU estimators:

1. Directly find an unbiased δ(T ).

2. Rao-Blackwellize any unbiased δ(X).

Example 1.1. If X1, . . . , Xn
iid∼ U [0, θ], then X(n) is complete sufficient for estimating θ.

We saw that n+1
n X(n) is UMVU. However, Keener shows that among estimators of the

form cX(n),
n+2
n+1X(n) actually has the best MSE.

Example 1.2. Let X1, . . . , Xn
iid∼ Pois(θ) with θ > 0 and pmf

p
(1)
θ (x) =

θxe−θ

x!
, x = 0, 1, . . . .

Then T (X) =
∑

iXi ∼ Pois(nθ) is complete sufficient with pmf

pTθ (t) =
(nθ)te−nθ

t!
.
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Let’s estimate θ2 with an unbiased estimator. First, we’ll use Method 1: X
2

is not unbiased

because E[X] = θ, so E[X
2
] > θ2 by Jensen’s inequality. Observe that

δ(T ) is unbiased ⇐⇒
∞∑
t=0

δ(t)pTθ (t) = θ2 ∀θ > 0

⇐⇒
∞∑
t=0

δ(t)
ntθt

t!
= θ2enθ ∀θ > 0.

Write θ2enθ =
∑∞

k=0
nkθk+2

k! =
∑∞

j=2
nj−2

(j−2)!θ
j . So we get δ(0) = δ(1) = 0, and for t ≥ 2,

δ(t) = nt−2

(t−2)! ·
t!
nt = t(t−1)

n2 . We can write this more compactly as

δ(t) =
t(t− 1)

n2
, t = 0, 1, . . .

Now we use Method 2, Rao-Blackwellization: We know that Eθ[X1X2] = (Eθ[X1])
2 =

θ2, so we want to condition X1X2 on T =
∑

iXi. Since X | T = t ∼ Multinomial(t, 1/n1n),
we can check that X1 | T = t ∼ Binom(t, 1/n) and X2 | X1 = x1, T = t ∼ Binom(t −
x1, 1/(n− 1)). So we can compute

E

[
X1X2 |

∑
i

Xi

]
= δ(T ),

as before.

1.2 Differential identities for the score function

Assume that P has densities pθ with respect to µ with Θ ⊆ Rd. Suppose there is a
common support {x : pθ(x) > 0} which is the same for all θ. We have the log-likelihood
`(θ;x) = log pθ(x).

Definition 1.1. Define the score function to be ∇`(θ;x).

We have
pθ+η(x) = e`(θ+η;x) ≈ pθ(x)eη

>∇`(θ,x)

for small η. So we can think of this as locally looking like an exponential family withe the
score function looking like a complete sufficient statistic.

We have differential identities, similar to in an exponential family. Start with

1 =

∫
X
e`(θ,x) dµ(x)
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Taking ∂
∂θj

on both sides, we get

0 =

∫
X

∂

∂j
`(θ;x)e`(θ;x) dµ(x).

This gives the identity
Eθ[∇`(θ;X)] = 0.

It is important that we are integrating using the same θ that we plug into the score function.
If we differentiate again with respect to θk, we get

0 =

∫
X

(
∂2`

∂θj∂θk
+

∂`

∂θj

∂`

∂θk

)
= Eθ

[
∂2

∂θj∂θk
`(θ;X)

]
+ E

[
∂`

∂θj
(θ;X)

∂`

∂θk
(θ;X)

]
which gives the identity

J(θ) := Eθ[−∇2`(θ;X)] = Varθ(∇`(θ;X)).

The quantity J(θ) is called the Fisher information.

1.3 The Cramér-Rao lower bound

Let’s relate this back to a statistic δ(X). Suppose

g(θ) = Eθ[δ(X)] =

∫
X
δ(x)e`(θ;x) dµ(x).

Then

∇g(θ) =

∫
δ∇`(θ)e` dµ

= Eθ[δ(X)∇`(θ;X)]

= Covθ(δ(X),∇`(θ;X)).

If we have only one parameter, so θ ∈ R, then Cauchy-Schwarz gives

Varθ(δ) Var( ˙̀(θ;X)) ≥ Covθ(δ, ˙̀(θ))2.

So we get

Theorem 1.1 (Cramér-Rao). Let δ(X) be an unbiased estimator for g(θ). If θ ∈ R,

Varθ(δ(X)) ≥ g′(θ)2

J(θ)
.

More generally, if θ ∈ Rd and g(θ) ∈ R,

Varθ(δ) ≥ ∇g(θ)>J(θ)−1∇g(θ).
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Remark 1.1. This technically holds for any estimator δ with Eθ[δ(X)] = g(θ). We are
just interpreting it as g(θ) coming first and δ being unbiased for g(θ).

Example 1.3 (iid sample). Suppose X1, . . . , Xn
iid∼ p

(1)
θ (x) with θ ∈ Θ, so X ∼ pθ(x) =∏

i p
(1)
θ (xi). Writing `1(θ;xi) = log p

(1)
θ (xi), we have

`(θ;x) =
∑
i

`1(θ, xi).

Then

J(θ) = Varθ(∇`(θ;X))

= nVarθ(∇`1(θ;Xi))

= nJ1(θ),

where J1(θ) is the Fisher information in a single observation. So Fisher information scales
linearly. This means that the Cramér-Rao lower bound scales like 1/n.

1.4 The Hammersley-Chapman-Robbins inequality

The Cramér-Rao lower bound requires differentiation under the integral. The Hammersley-
Chapman-Robbins inequality gives a more general bound using finite differences. The idea
is that

pθ+ε(x)

pθ(x)
− 1 = e`(θ+ε;x)−`(θ;x) − 1 ≈ ε>∇`(θ;x)

for small ε. So in the limit, we will get a similar bound to Cramér-Rao.

Theorem 1.2 (Hammersley-Chapman-Robbins). Let δ be unbiased for g(θ), and assume
that for some collection of ε, pε � p. Then

Varθ(δ) ≥ sup
ε

g(θ + ε)− g(θ)

Eθ
[(

pθ+ε(X)
pθ(X) − 1

)2] .
Proof. Observe that

Eθ
[
pθ+ε(x)

pθ(x)
− 1

]
=

∫ (
pθ+ε
pθ
− 1

)
pθ dµ

=

∫
(pθ+ε − pθ) dµ = 0,

as long as pθ+ε � pθ. Furthermore,

Cov

(
δ(X),

pθ+ε(X)

pθ(X)
− 1

)
=

∫
δ

(
pθ+ε
pθ
− 1

)
pθ dµ
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=

∫
δpθ+ε dµ−

∫
δpθ dµ

= Eθ+ε[δ(X)]− Eθ[δ(X)]

= g(θ + ε)− g(θ).

Using Cauchy-Schwarz, we get

Varθ(δ) · Eθ

[(
pθ+ε(X)

pθ(X)
− 1

)2
]
≥ g(θ + ε)− g(θ).

So we get

Varθ(δ) ≥
g(θ + ε)− g(θ)

Eθ
[(

pθ+ε(X)
pθ(X) − 1

)2] .
This lower bound holds for every ε, so we can take the sup over ε on the right hand side.

Remark 1.2. If we let ε → 0, we get the Cramér-Rao lower bound, but taking the sup
over ε gives a better bound.

1.5 Efficiency

The Cramér-Rao lower bound is not always achievable.

Definition 1.2. The efficiency is

effθ(δ) =
CRLB

Varθ(δ)
≤ 1.

We say that δ(X) is efficient if effθ(δ) = 1 for all θ.

Note that
effθ(δ) = Corrθ(δ(X), `′(θ;X))2

Example 1.4. For exponential families,

pη(x) = eη
>T (x)−A(η)h(x), `(η;x) = η>T (x)−A(η) + log h(x).

So the score is
∇`(η;x) = T (x)− Eη[T (X)].

This tells us that the Fisher information is

Varη(∇`(η;X)) = Varη(T (X))

= ∇2A(η)

= Eη[−∇2`(η;X)]
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Example 1.5. Consider a curved exponential family with θ ∈ R:

pθ(x) = eη(θ)
>T (x)−B(θ)h(x).

Then the log-likelihood is

`(θ;x) = η(θ)>T (x)−B(θ)− log h(x),

so the chain rule gives the score as

d

dθ
`(θ;x) = η̇(θ)>T (x)− Ḃ(θ)

Note that d
dθB(θ) = d

dθA(η(θ)) =
∑n

j=1 η̇(θ) ∂
∂ηj

A(η) = η̇(θ)>(∇A(η)).

= η̇(θ)>(T (x)− Eη[T (X)])
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