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1 Computing UMVU Estimators and Lower Bounds for Un-
biased Estimation

1.1 Computing UMVU estimators

Last time, we proved Jensen’s inequality for convex f:
fE[X]) < E[f(X)].

The Rao-Blackwell theorem told us that if L(6;d) is convex in d, §(X) is an estimator,
and T'(X) is sufficient, then E[d | T is better than 6. We also saw that if T'(X) is complete
sufficient and g(0) is U-estimable, there is a unique unbiased estimator of the form 6(7"). It
is UMVU (dominates all other unbiased estimators for any convex L). We saw that there
were 2 ways to find UMVU estimators:

1. Directly find an unbiased §(7T").

2. Rao-Blackwellize any unbiased §(X).
Example 1.1. If X,..., X, iS U[0,0], then X, is complete sufficient for estimating 6.
We saw that ”THX(n) is UMVU. However, Keener shows that among estimators of the

form cX,), Z—ﬁX(n) actually has the best MSE.

Example 1.2. Let Xi,..., X, i Pois(#) with > 0 and pmf
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Then T'(X) = ), X; ~ Pois(n#) is complete sufficient with pmf
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Let’s estimate 62 with an unblased estimator. First, we’ll use Method 1: YQ is not unbiased
because E[X] = 0, so E[X ] > 62 by Jensen’s inequality. Observe that

§(T) is unbiased <= Y d(t)pj (t) = 6> V0 >0
t=0

> ntgt
— Zé(t)T =0%"" o > 0.
Write 62e™ = Y22, kglf“ = 29 ?J 22 §7. So we get 6(0) = 6(1) = 0, and for t > 2,

o(t) = (?t_;)! . % = % We can write this more compactly as

tt—1)
5(t) =~ t=0,1,...
="
Now we use Method 2, Rao-Blackwellization: We know that Eg[X;Xs] = (Eg[X1])? =
62, so we want to condition X1 Xo on T =Y, X;. Since X | T = t ~ Multinomial(t,1/n1,),
we can check that X; | 7' =t ~ Binom(t,1/n) and X5 | X7 = 21,7 = t ~ Binom(t —
x1,1/(n —1)). So we can compute

E [X1X2 | ZXZ-] = 8(T),

i

as before.

1.2 Differential identities for the score function

Assume that P has densities py with respect to pu with ® C R?  Suppose there is a
common support {z : pg(x) > 0} which is the same for all §. We have the log-likelihood

(03 z) = log py(x).
Definition 1.1. Define the score function to be V/{(6;x).

We have

LO0+m;w) enTVK(O,m)

Po+n(x) =€ po ()

for small 1. So we can think of this as locally looking like an exponential family withe the
score function looking like a complete sufficient statistic.
We have differential identities, similar to in an exponential family. Start with

1 :/ !0 dpu(x)
X



Taking a%j on both sides, we get

0= / 36(6’; 2)e' ) dp(x).
x 0j
This gives the identity
Ey[VE(0; X)] = 0.

It is important that we are integrating using the same 6 that we plug into the score function.
If we differentiate again with respect to 6, we get

%0 or ol 0? ol ol
0= /X <aejaek * aejaek) =B [aejae/“”>] tE [a@(emaek(”)

which gives the identity
J(0) := Eg[-V2(0; X)] = Varg(VL(6; X)).

The quantity J(6) is called the Fisher information.

1.3 The Cramér-Rao lower bound

Let’s relate this back to a statistic 6(X ). Suppose

o(0) = Bl (X)] = [ 3()e"") dp(a).
Then

Vg(9) = / SVL(0)e’ du

— Bl(X)VE(6; X))
= Covy(d(X), VL(0; X)).

If we have only one parameter, so 8 € R, then Cauchy-Schwarz gives
Varg(8) Var(£(6; X)) > Covg(5, £(6))*.
So we get

Theorem 1.1 (Cramér-Rao). Let 6(X) be an unbiased estimator for g(). If 0 € R,

Varg(§(X)) >

More generally, if 0 € R? and g(0) € R,

Varg(6) > Vg(8) " J(8) ' Vg(6).



Remark 1.1. This technically holds for any estimator ¢ with E[6(X)] = g(8). We are
just interpreting it as ¢g(6) coming first and § being unbiased for g(6).

Example 1.3 (iid sample). Suppose Xi,..., X, ES pél)(x) with € O, so X ~ pg(z) =
TL, 28" (2). Writing €4(6; ;) = log pi” (), we have

00;z) = > £1(0,5).

Then
J(6) = Vary(VE(8; X))
= n Varg(V{1(0; X;))
= TLJl (0),

where J;(0) is the Fisher information in a single observation. So Fisher information scales
linearly. This means that the Cramér-Rao lower bound scales like 1/n.

1.4 The Hammersley-Chapman-Robbins inequality

The Cramér-Rao lower bound requires differentiation under the integral. The Hammersley-
Chapman-Robbins inequality gives a more general bound using finite differences. The idea
is that
p0+6(x) 1= ef(@—l—a;x)—é(@;x) 1 ETVE(Q;(L‘)
po(x)

for small €. So in the limit, we will get a similar bound to Cramér-Rao.

Theorem 1.2 (Hammersley-Chapman-Robbins). Let § be unbiased for g(0), and assume
that for some collection of €, p. < p. Then

Varg(d) > sup 9(6+¢) = 9(9) T
€ (X
By {(piﬁﬁo(c)) -1) }
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= /(pe+e —pg)dp =0,

Proof. Observe that

as long as pgi. < py. Furthermore,
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= Eg1-[6(X)] — Eg[5(X)]
=g(0+¢)—g(0).

Using Cauchy-Schwarz, we get

Po+e (X>

Varg(9) - Ey [( o (X)

2
- 1) ] > 9(0+¢) = g(0).

So we get

96 +2)—g(6)
B | (58 1)

This lower bound holds for every €, so we can take the sup over € on the right hand side. [

Varg(é) Z

Remark 1.2. If we let ¢ — 0, we get the Cramér-Rao lower bound, but taking the sup
over ¢ gives a better bound.

1.5 Efficiency

The Cramér-Rao lower bound is not always achievable.

Definition 1.2. The efficiency is

_ CRLB __
~ Varg(6) ~

We say that §(X) is efficient if effyp(d) = 1 for all 6.

effy(0)

Note that
effg(0) = Corrg(5(X), £'(6; X))?

Example 1.4. For exponential families,
T () —
py(x) =" TOADR@), l(n;) =" T(x) — A(n) +log h(x).

So the score is
Vi(n;x) = T(x) — Ep[T(X)].

This tells us that the Fisher information is
Var, (V{(n; X)) = Var,(T(X))
= V2A(n)
= En[_v2€(77; X)]



Example 1.5. Consider a curved exponential family with 8 € R:
po(z) = 1O T@=BOp(y).
Then the log-likelihood is
0(6;2) = n(9) " T(z) — B(#) — log h(x),

so the chain rule gives the score as

Lo(0:0) = i0) T(x) - BO)
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